Environmental Technology

Application of microwave-irradiated manganese dioxide in the removal of polychlorinated biphenyls from soil contaminated by capacitor oil

Zhi-Rong Lin a b, Ling Zhao a b & Yuan-Hua Dong a b

a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
b Graduate University of Chinese Academy of Sciences, Beijing, 100049, China

Accepted author version posted online: 29 Aug 2012. Published online: 24 Sep 2012.

To cite this article: Zhi-Rong Lin, Ling Zhao & Yuan-Hua Dong (2013) Application of microwave-irradiated manganese dioxide in the removal of polychlorinated biphenyls from soil contaminated by capacitor oil, Environmental Technology, 34:5, 637-644, DOI: 10.1080/09593330.2012.710405

To link to this article: http://dx.doi.org/10.1080/09593330.2012.710405

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions
Application of microwave-irradiated manganese dioxide in the removal of polychlorinated biphenyls from soil contaminated by capacitor oil

Zhi-Rong Lina,b, Ling Zhaoa,b,∗ and Yuan-Hua Donga,b

aKey Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; bGraduate University of Chinese Academy of Sciences, Beijing 100049, China

(Received 6 January 2012; final version received 4 July 2012)

The removal of polychlorinated biphenyls (PCBs) from soil contaminated with capacitor oil, using microwave (MW)-irradiated manganese dioxide (MnO\textsubscript{2}), was examined under different conditions. The effects of different types of MnO\textsubscript{2} added as oxidant, as well as the initial amount of water, MnO\textsubscript{2}, and sulphuric acid solution, were also investigated. The removal efficiencies for dichlorobiphenyls, trichlorobiphenyls, tetrachlorobiphenyls, pentachlorobiphenyls, hexachlorobiphenyls, heptachlorobiphenyls, and octachlorobiphenyls were approximately 95.9\%, 82.5\%, 52.0\%, 71.6\%, 62.5\%, 28.6\%, and 16.1\%, respectively, by 800 W MW irradiation for 45 min with the assistance of 0.1 g \(\beta\)-MnO\textsubscript{2} and 0.2 mL water in 1.0 g severely PCB-contaminated soil (\(\sum\) PCB = 1560.82 mg/kg); meanwhile, the concentrations of Mn2+ ions detected were from 10.6 \(\pm\) 1.9 mg/kg at 0 min to 108.2 \(\pm\) 7.8 mg/kg after 45 min MW irradiation, indicating that MnO\textsubscript{2} acted as not only a MW absorber but also an oxidizer. Removal efficiencies of PCBs from contaminated soil increased with increasing the amounts of water and MnO\textsubscript{2} added. The type of MnO\textsubscript{2} also affected the removal of PCBs, following an order of \(\delta\)-MnO\textsubscript{2} > \(\alpha\)-MnO\textsubscript{2} > \(\beta\)-MnO\textsubscript{2}. The addition of low concentration of sulphuric acid (such as 1.0 mol/L) solution was favourable for the removal of low chloro-substituted PCBs, but the addition of more than 1.0 mol/L sulphuric acid reduced the removal of all PCBs. The pronounced removal of PCBs from contaminated soil in a short treatment time indicates that MW irradiation with the assistance of MnO\textsubscript{2} is an efficient and promising technology for the remediation of PCB-contaminated soil.

Keywords: microwave irradiation; polychlorinated biphenyls; manganese dioxide; soil remediation

1. Introduction

Polychlorinated biphenyls (PCBs) are persistent organic pollutants that threaten the environment and human health \cite{1}. In China, approximately 10,000 tons of PCBs were produced from 1965 to 1974 (the production of PCBs was banned in 1974). Furthermore, China imported numerous capacitors containing PCBs from Belgium and France \cite{2}. These PCBs can be released from commercial PCB-containing products and enter the environment via waste emissions, oil leakage, volatilization, dry and wet deposition, or other means, thus resulting in widespread environmental pollution. A large amount of disused capacitors and transformers could lead to serious leakage of PCBs because of their improper disposal, which would pose a great risk to the environment and human health \cite{3}. Incineration was generally used to treat PCB-contaminated soils at Superfund sites in the USA; however, there was widespread public opposition to this approach owing to the potential for release of dioxin via the flue gas stream \cite{4}. Therefore, it is very important to find other safe and efficient technologies for the treatment of PCB-containing wastes.

Microwave (MW) energy induces molecular motion by rotation of dipoles and migration of ions; materials that absorb MW irradiation are called dielectrics \cite{5}. MW heating has been widely used in organic and inorganic synthesis, dehydration, food sterilization, extraction and environmental engineering because of its rapid, uniform and selective advantages \cite{6–9}. In the remediation of contaminated soils, MW could achieve a fast removal of pollutants whether the soils are permeable or not \cite{5,10}. Abramovitch et al. \cite{11} used MW energy to decompose chlorinated aromatic compounds in soil with the assistance of microwave absorents (powdered Cu\textsubscript{2}O, Al, graphite, or pencil lead) and NaOH. Highly efficient decomposition was achieved by the addition of powdered Cu\textsubscript{2}O or Al and NaOH. Only minute amounts of decomposition products could be extracted from the soil following remediation, suggesting that the majority of the compounds were probably mineralized or very tightly bound to the soil. Liu et al. \cite{12–14} reported the application of microwaves in combination with activated carbon for the removal of pentachlorophenol and PCBs. It is well known that MnO\textsubscript{2} was not only one of the most important natural oxidants in soils \cite{15,16}, but also one of the strongest MW absorbers \cite{17,18}. MnO\textsubscript{2} has been shown to be an effective oxidant for a wide range of pollutants including substituted phenols and anilines.

∗Corresponding author. Email: zhaoling@issas.ac.cn

© 2013 Taylor & Francis
Furthermore, Pizzigallo et al. [21] reported that MnO$_2$ alone could partially remove five PCBs from soil. Under the combined effects of MW irradiation and MnO$_2$, a complete removal of hexachlorobenzene from soil was obtained within 10 min by the addition of H$_2$SO$_4$, but no significant removal was observed by the addition of NaOH or H$_2$O in the same conditions [5]. In our previous work [22], PCB28, PCB77, and PCB118 were chosen as representatives of PCBs to investigate removal efficiencies of PCB using microwave-irradiated δ-MnO$_2$ in two types of soils (Ali-Perodic Ferrosols and Udic Argosols), and their removal efficiencies were found to be above 95%. However, the feasibility of this technology for the removal of PCBs with remarkably high concentrations in soil heavily contaminated by capacitor oil has not been well documented. Therefore, on the basis of our previous work, the purpose of this study was to further investigate the removal efficiencies for dozens of PCB congeners containing different chlorine substituent numbers in actual heavily PCB-contaminated soil collected from Zhejiang province in China and to discuss the effects of MW irradiation time, the initial amounts of H$_2$O and MnO$_2$, type of MnO$_2$, and acidic conditions on the removal of dozens of PCBs.

2. Experimental

2.1. Materials

Soil heavily contaminated by capacitor oil was collected from a transformer-filled landfill in Ningbo, Zhejiang Province, China. The soil was air-dried in a fume hood, and then ground and sieved through a 20 mesh sieve to remove debris and stones. The soil was then sealed in a glass bottle and used as needed. PCB28 and a PCB congener mixture containing 32 standards were purchased from AccuStandard, USA. High-performance liquid chromatographic-grade n-hexane and acetone were obtained from Merck (Darmstadt, Germany). H$_2$SO$_4$ was obtained from Shanghai Chemical Factory (China). Ultra pure water was obtained using a Milli-Q Advantage A10 Water Purification System from Millipore (Bedford, MA, USA), and all the solutions used in this study were prepared with ultrapure water.

MnO$_2$ was synthesized according to the methods of Cai and Ren [23] and Wang and Li [24]. The preparation and characterization of synthesized MnO$_2$ are described in detail in the supplementary information (Sections 1 and 2). The synthesized MnO$_2$ was characterized by δ-MnO$_2$, α-MnO$_2$, and β-MnO$_2$ according to X-ray diffraction analysis. The Brunauer–Emmett–Teller (BET) specific surface area of δ-MnO$_2$, α-MnO$_2$, and β-MnO$_2$ are 250.44, 23.45 and 50.20 m2/g, respectively. Scanning electron microscopy images indicated that the synthesized δ-MnO$_2$ was composed both of granular and rod-shaped microparticles (Figure S2a, supplementary information), but α-MnO$_2$ and β-MnO$_2$ were composed of nanorods and nanowires, respectively (Figure S2b and S2c, Supplementary information).

2.2. Methods

The experimental apparatus was the same as that in our previous study [22]. In brief, a microwave oven with a frequency of 2450 MHz was used. The microwave apparatus had a continuous adjustable power setting, which could be set to a fixed power output, such as 800 W, based on the requirement of the experiment. For a given material, MW power is very important for the temperature attained by MW irradiation. Our previous study showed that higher MW power was more favourable for the removal of PCBs. In order to compare with previous work, all of the experiments were carried out at 800 W in this study. A 45 mL brown borosilicate glass bottle capped with a Teflon-lined septum (CNW, Germany) was used as a batch reactor.

Certain amounts of MnO$_2$ were added and mixed thoroughly by hand with 1.0 g of PCB-contaminated soil in a bottle. Then, different amounts of H$_2$O (0, 0.1, 0.2 and 0.3 mL) were introduced. The effect of MnO$_2$ amount on the PCB removal efficiencies was investigated with addition of 0, 0.01, 0.02 and 0.1 g of δ-MnO$_2$ in 1.0 g of PCB-contaminated soil. Different concentrations of H$_2$SO$_4$ solution (0.2 mL), 1.0, 2.0 and 4.0 mol/L, were added to 1.0 g of PCB-contaminated soil to evaluate the influence of proton concentrations on the PCB removal efficiencies. After the cap was screwed on, the bottles were placed on the rotary table in a microwave oven, and each batch treatment was set up as four replicates. The samples were treated by microwave irradiation under different conditions. At the designated time (e.g. 0, 1, 4, 8, 15, 30 and 45 min), microwave irradiation was stopped, and the MW-treated soil samples were extracted by an ultrasonication method after the irradiated samples were cooled to room temperature. One gram samples of MW-treated and raw soil were individually extracted with 10 mL of acetone and hexane solvent mixture (1:1, v/v) for 30 min in a 30°C ultrasonic water bath. Then, the samples were centrifuged at 4000 rpm for 10 min, and 0.1 mL of supernatant was drawn out using a micro-syringe and diluted to 2.0 mL with hexane for gas chromatography analysis.

To monitor the generation of Mn$^{2+}$ during the oxidative degradation of PCBs by MW-irradiated MnO$_2$, four replicates of 1.0 g of MW-treated soil samples with addition of 0.1 g of δ-MnO$_2$ were measured for concentration of generated Mn$^{2+}$ after MW irradiation for 0, 4, 15 and 45 min. The procedure of extracting generated Mn$^{2+}$ from soil was based on the method of Lu [25]. In brief, 20.0 mL of Al$_2$(SO$_4$)$_3$ (0.1 mol/L, pH 2.5) was added to each of four soil samples and shaken on a mixer for 5 min. The mixture was filtered and 5.0 mL of the filtrate was immediately poured into a 25 mL colorimetric tube, followed by the addition of 1.6 mL of H$_2$SO$_4$ (1:1, v/v), 0.8 mL of H$_3$PO$_4$ (1.69 g/mL) and 8 mL of water. Then, 0.1 g of KIO$_4$ was added and
placed in a 90 °C water bath for 30 min until the solution had completely changed to a purple colour and no further colour change was observed. After cooling to room temperature, the Mn²⁺ in the solution was monitored using a Rayleigh UV-1600 UV-Vis spectrophotometer (Beijing, China). The absorbance of the solution was measured at 540 nm and the concentration was determined by the standard curve.

2.3. Analysis methods
Quantitative analysis of PCBs was accomplished by an Agilent 7890A gas chromatograph equipped with an electron capture detector, using external standards and the peak area calculation method. An Agilent 1901J-413 column with an internal diameter of 0.32 mm and a film thickness of 0.25 μm was used. A split–splitless injector in the splitless mode was used. The injector and detector temperatures were set at 250 °C and 300 °C, respectively. N₂ was used as the carrier and make-up gas with a flow rate of 1.0 mL/min and 60.0 mL/min, respectively. The column temperature was programmed as follows: 150 °C hold for 2 min, 7 °C/min hold for 2 min, and 300 °C hold for 2 min. The injector and detector temperature were set at 250 °C and 300 °C, respectively. The injector and detector temperature were set at 250 °C and 300 °C, respectively. The injector and detector temperature were set at 250 °C and 300 °C, respectively. The injector and detector temperature were set at 250 °C and 300 °C, respectively.

3. Results and discussion
3.1. Residual characteristics of PCBs in raw contaminated soil
The raw soil in this study was severely contaminated by capacitor oil that had leaked from discarded transformers. The chromatogram of the raw soil without MW irradiation revealed about 35 peaks, most of which were 3-Cl, 4-Cl, and 5-Cl substituted congeners, as shown in Figure S3 (supplementary information). Such a great number of congeners made quantification extremely complicated and with large error bars. Therefore, only 18 major and well-resolved peaks were chosen from the chromatogram for quantification purposes, because these 18 peaks could represent the majority of PCBs and satisfy the requirements for quantification, as suggested by previous studies [13, 26]. These 18 major peaks included one dichlorobiphenyl (2,4′-DiCB, PCB8), two trichlorobiphenyls (2,2′,5-TriCB, PCB18; 2,4,4′-TriCB, PCB28), four tetrachlorobiphenyls (2,2′,3,5′-TetraCB, PCB44; 2,2′,5,5′-TetraCB, PCB52; 2,3′,4,4′-TetraCB, PCB66; 3,3′,4,4′-TetraCB, PCB77), four pentachlorobiphenyls (2,2′,4,5,5′-PentaCB, PCB101; 2,3′,4,4′,5′-PentaCB, PCB105; 2,3,4,4′,5-PentaCB, PCB118; 3,3′,4,4′,5′-PentaCB, PCB126), three hexachlorobiphenyls (2,2′,3,3′,4,4′-HexaCB, PCB128; 2,2′,3,3′,4,5′-HexaCB, PCB137; 2,2′,4,4′,5,5′-HexaCB, PCB153), three heptachlorobiphenyls (2,2′,3,3′,4,4′,5′-HeptaCB, PCB170; 2,2′,3,4,4′,5,5′-HeptaCB, PCB180; 2,2′,3,4,4′,5,5′,6-OctaCB, PCB187), and one octachlorobiphenyl (2,2′,3,3′,4,4′,5,5,6-OctaCB, PCB195). Direct comparison of the individual peak areas before and after MW irradiation was made by normalizing each peak area with the external standard.

Table 1 shows the concentrations of the 18 selected PCB congeners in the contaminated raw soil, and the total concentration of the 18 PCBs in the raw soil was about 1560.82 mg/kg. The homologue profile of PCBs in the raw soil was similar to the composition characteristics

![Table 1. The concentration of 18 selected PCB congeners in the raw soil contaminated by capacitor oil.](image-url)

- concentration of each PCB congener.
- Per cent 1 = each PCB congener/ ∑PCBs × 100%.
- ∑PCBs with the same number of chloro-substituents.
- Per cent 2 = ∑PCBs with the same number of chloro-substituents/ ∑PCB × 100%.
3.2. Removal efficiencies of PCBs using MW-irradiated \(\delta \)-MnO\(_2\)

Figure 1 illustrates that, of the four different treatments, MW-irradiated \(\delta \)-MnO\(_2\) in the presence of water resulted in highest PCB removal. Less than 20% of PCBs could be removed from soil when the contaminated soil was only treated by MW irradiation for 45 min in the absence of \(\text{H}_2\text{O} \) and MnO\(_2\), indicating that MW irradiation alone has weak efficiency for the removal of PCBs. MW irradiation with the assistance of \(\text{H}_2\text{O} \) slightly enhanced the removal efficiencies of low chlorinated biphenyls, but this treatment decreased the removal of high chlorinated biphenyls (Figure 1). The addition of water affects the final temperature of the reaction system during MW heating, because water has a high dielectric loss factor [30]. The removal of PCBs from soil by MW irradiation in the presence of \(\text{H}_2\text{O} \) might be partly accomplished through steam distillation, which would result in some of the PCBs desorbing out of the soil and having more chance to be decomposed, as observed in previous studies [13,31]. Thus, an enhancement of the removal efficiencies of low chlorinated biphenyls obtained with the addition of water might be attributed to the steam distillation effect owing to the relatively low steaming temperature of low chlorinated biphenyls. However, high chlorinated biphenyls, such as HexaCB, HeptaCB and OctaCB, were difficult to desorb and steam out from soil by MW heating, even when a higher final temperature of the reaction system was attained in the presence of water, because of their higher steaming temperatures and stronger affinities for soil.

Comparing to direct MW irradiation, the removal efficiencies of all PCBs were considerably improved by MW irradiation for 45 min with the assistance of 0.1 g of \(\delta \)-MnO\(_2\) (Figure 1), indicating that most PCBs were removed from soil through oxidative degradation by \(\delta \)-MnO\(_2\). The combination of 0.1 g \(\delta \)-MnO\(_2\) with 0.2 mL \(\text{H}_2\text{O} \) further increased the removal of PCBs by MW irradiation (Figure 1), especially for DiCB, TriCB, PentaCB and HexaCB. The removal efficiencies of DiCB and TriCB in the presence of \(\delta \)-MnO\(_2\) and \(\text{H}_2\text{O} \) were high, up to 95.9% and 82.5%, respectively. However, the removal efficiencies of TetraCB, PentaCB, HexaCB, HeptaCB and OctaCB were about 52.0%, 71.6%, 62.5%, 28.6% and 16.1%, respectively, obviously lower than those of DiCB and TriCB. The higher the number of chlorine substituent, the lower the removal of PCBs observed in this study, as already reported in abiotic and biotic transformation of PCBs [21,32,33].

Both water and \(\delta \)-MnO\(_2\) are dielectrics that can absorb large amounts of MW energy. Therefore, when water and \(\delta \)-MnO\(_2\) were added, high temperature and high pressure occurred in the bottle during MW irradiation [5]. Many complex reactions should take place under such high temperature and high pressure conditions. Varanasi et al. [34] have reported that the destruction efficiencies of PCBs could be increased by increasing the water temperature when PCB-contaminated soil was mixed with iron nano-particles in water, which suggested that the thermal decomposition of PCBs would occur under MW irradiation in the presence of water and generate small molecule fragments that could be bound tightly to soil [35]. On the other hand, the oxidative degradation of PCBs by \(\delta \)-MnO\(_2\) at room temperature has also been confirmed by Pizzigallo et al. [21], which implied that a higher removal efficiency of PCBs would be achieved by MW-irradiated \(\delta \)-MnO\(_2\) under a higher temperature condition. Thus, both the thermal decomposition and the oxidative degradation contributed to the removal of PCBs under MW irradiation, but the oxidative degradation played a dominating role in removing PCBs based on Figure 1. Furthermore, the effects of irradiation time, the initial
amounts of added water and δ-MnO$_2$, the type of MnO$_2$, and the acidity of the reaction system on the removal efficiencies of PCBs from actual contaminated soil were also examined and the details are presented in the following sections.

3.3. Effect of irradiation time

Figure 2 presents the removal efficiencies of PCBs from 1.0 g of actual heavily contaminated soil after four different MW irradiation times (4, 8, 15 and 45 min) in the presence of 0.1 g δ-MnO$_2$ and 0.2 mL water. The removal efficiencies of all selected PCBs were found to increase with increasing irradiation time, although in a nonlinear fashion. For example, the removal efficiency of DiCB was observed to be approximately 50.2%, 86.2%, 95.0% and 95.9% after irradiation for 4, 8, 15 and 45 min, respectively, indicating that DiCB is highly susceptible to oxidation by MW-irradiated δ-MnO$_2$. Likewise, the removal efficiencies of TriCB, TetraCB, PentaCB and HexaCB were considerably enhanced when irradiated from 4 min to 15 min, and then slightly increased when irradiated in the range of 15–45 min. On the other hand, the removal efficiencies of HeptaCB and OctaCB exhibited a slow increase when irradiated from 4 min to 45 min. Based on the report of Pizzigallo et al. [21], the mechanochemical complete removal of 2,2'-DiCB and a removal of 30% and 20% of 2',3,4-TriCB and 3,3',4,4'-TetraCB by δ-MnO$_2$ needed 10 days and 90 days, respectively; however, the removal of 95.9%, 82.5%, and 52.0% of 2,4'-DiCB, TriCB and TetraCB was achieved in only 45 min by MW-irradiated δ-MnO$_2$. The great reduction in treatment time in this study demonstrates that MW irradiation with the assistance of MnO$_2$ is an efficient and promising treatment technology for the remediation of heavily PCB-contaminated soil.

3.4. Effect of water content

Water is a typical polar substance that can greatly absorb MW energy. Additionally, changes in water content will alter the conductivity and permittivity of the treated soil [14]. Therefore, water content is an important factor that may influence the removal of PCBs by MW-irradiated MnO$_2$. Four amounts of water (0, 0.1, 0.2 and 0.3 mL) were added to 1.0 g of soil with 0.1 g of δ-MnO$_2$ and treated with MW irradiation for 45 min to evaluate the influence of water content on the removal of PCBs from soil, and the results are presented in Figure 3. When no water was added, the removal efficiencies of PCBs slightly increased as the addition of water was increased to 20% of treated soil mass (0.2 mL water). Little difference was observed between the addition of 0.2 mL (20%) and 0.3 mL (30%) water, suggesting that excess water may not favour the temperature increase in the reaction system, because the circles of evaporation and condensation of water may consume the energy of the reaction system [13]. Thus, the optimal water content should be 20% of treated soil mass.

3.5. Effect of δ-MnO$_2$ dosage

The removal efficiencies of PCBs from 1.0 g of contaminated soil with the addition of 0.01 g, 0.02 g and 0.1 g of δ-MnO$_2$ in the presence of 0.2 mL of water are shown in Figure 4a. It is evident from Figure 4a that the removal of PCBs increased with the added amount of MnO$_2$. When no δ-MnO$_2$ was added, the removal efficiencies of PCBs ranged from 2.56% for HeptaCB to 26.71% for DiCB (Figure 4a). When 0.01 g and 0.02 g of δ-MnO$_2$ were added, the removal efficiencies of PCBs were increased to a range of 5.17–39.70% and 8.87–44.82%, respectively. When the added amount of δ-MnO$_2$ was up to 0.1 g, the removal efficiencies of DiCB, TriCB, TetraCB, PentaCB, HexaCB, HeptaCB and OctaCB reached 95.9%, 82.5%, 52.0%, 71.6%, 62.5%, 28.6% and 16.1%, respectively.
Accordingly, the concentration of Mn²⁺ was detected to be 10.6 ± 1.9 (representing the background value of free Mn²⁺ in the treated soil), 29.6 ± 1.1, 62.7 ± 3.6 and 108.2 ± 7.8 mg/kg for 0, 4, 15 and 45 min of MW irradiation in the presence of 0.1 g δ-MnO₂ (Figure 4b). The generation of Mn²⁺ ions from δ-MnO₂ increased with increasing removal of PCBs, indicating that δ-MnO₂ oxidized PCBs leading to its reduction into Mn²⁺ ions. On the other hand, Guan et al. [17] reported that MnO₂ is a strong microwave absorbent with a very broad bandwidth, and its temperature could increase from 298 to 1378 K in 100 s at a speed of 10.80 K/s when subjected to electromagnetic wave irradiation. Such a high temperature on the surface of δ-MnO₂ will accelerate the oxidative removal of PCBs from soil. Thus, an increase in the initial amount of MnO₂ added can lead to the absorption of more microwave energy, effectively enhancing MnO₂ reactivity and oxidizing more PCBs.

3.6. Effect of MnO₂ type

Different types of MnO₂, such as α-MnO₂, β-MnO₂, and δ-MnO₂, exhibited remarkable discrepancies in oxidation capacity and morphology [32]. Duan et al. [18] also found that different crystalline types of MnO₂ have different electromagnetic characteristics. To examine the effect of different types of MnO₂ on the removal efficiencies of PCBs, experiments were carried out with the addition of 0.2 mL of water to 1.0 g of contaminated soil with the assistance of 0.1 g of α-MnO₂, β-MnO₂ and δ-MnO₂, respectively, for 45 min of MW irradiation. The results showed that δ-MnO₂ was more effective in degrading PCBs, followed by α-MnO₂ and β-MnO₂ (Figure 5). This result was in accordance with the reported oxidation capacity of these three types of MnO₂ [36], which followed an order of δ-MnO₂ (devoid of Mn³⁺) > α-MnO₂ > β-MnO₂. On the other hand, the variety of the crystalloid state, the purity and the morphology of the three types of MnO₂ played important roles in the differences of their microwave adsorption capacities as reported by Duan et al. [18]. A flaky or strip-shaped structure had weaker microwave adsorption capacity than a spherical particulate because the former could form more dipole moments, which caused it to have more scattering cross-sections when subjected to electromagnetic radiation [18]. δ-MnO₂ was composed of granular and rod-shaped microparticles (Figure S2a, supplementary information), and the microwave absorption of δ-MnO₂ was high because δ-MnO₂ summed the attenuations of the different phases. The purity and crystallinity of α-MnO₂ and β-MnO₂, composed of nanorods and nanowires (Figure S2b and S2c, supplementary information), were greatly improved by contrast with δ-MnO₂, suggesting that the MW attenuation of α-MnO₂ and β-MnO₂ weakened accordingly.

3.7. Effect of acidic condition

Previous studies showed that acidic conditions could considerably affect the degradation of organic pollutants in soil by MW-irradiated MnO₂ [5,22]. Therefore, 0.2 mL of four concentrations (0, 1.0, 2.0 and 4.0 mol/L) of H₂SO₄...
solutions was added to investigate the effect of acidity on the removal of PCBs from actual polluted soil by MW-irradiated δ-MnO$_2$. The results are shown in Figure 6. The removal efficiencies of DiCB, TriCB, TetraCB and PentaCB increased from 87.9%, 64.5% and 72.8% (in the absence of H$_2$SO$_4$) to 100%, 87.9% and 72.8% in the presence of 1.0 mol/L H$_2$SO$_4$, respectively, indicating that low acidity could slightly promote the removal of low chlorinated biphenyls. However, the addition of 1.0 mol/L H$_2$SO$_4$ reduced the removal of high chlorinated biphenyls, such as HexaCB, HeptaCB and OctaCB. When the concentration of added H$_2$SO$_4$ solution was higher than 1.0 mol/L, the removal efficiencies of all selected PCBs slightly decreased with an increase in the concentration of added H$_2$SO$_4$ solution (Figure 6). The result that addition of acid solution decreased the removal of PCBs by MnO$_2$ was not in agreement with previous studies [5,22], but the destruction efficiencies of PCBs by iron nano-particles were also found to decrease with increasing acidity of the reaction system [34]. On the one hand, the addition of H$^+$ enhanced the oxidation capacity of MnO$_2$, because H$^+$ ions were required for the reduction of MnO$_2$ to generate Mn$^{2+}$ ions [37]. On the other hand, acidification of soil would alter the composition of clay mineral and humic compounds in the soil [38–40], thereby affecting the adsorption force of PCBs in soil. Therefore, when low concentrations of sulphuric acid solution were added to the soil–MnO$_2$ mixture, the oxidation capacity of MnO$_2$ increased, which resulted in the increased removal of low chlorinated biphenyls; however, the decrease in the removal efficiencies of high chlorinated biphenyls, such as HexaCB, HeptaCB and OctaCB, might be attributed to the greater difficulties in desorption from soil because of their higher hydrophobicity and stronger affinities for soil. In the same way, addition of high concentrations of sulphuric acid solution in soil might seriously change the composition and physical structure of the raw soil, which might result in the reduction of the transferable amount of PCBs from soil to MnO$_2$ surfaces and accordingly decrease the removal efficiencies of PCBs.

4. Conclusions

Compared to MW irradiation in the absence of both water and MnO$_2$, the removal efficiencies of PCBs from actual heavily PCB-contaminated soil were considerably raised by MW irradiation for 45 min with the assistance of water and MnO$_2$. The removal efficiencies of PCBs from contaminated soil were also found to considerably increase, although in a nonlinear fashion, as the MW irradiation time increased, and as the initial amounts of water and MnO$_2$ were increased. The generation of Mn$^{2+}$ ions from δ-MnO$_2$ was increased with increasing removal of PCBs, indicating that δ-MnO$_2$ oxidized PCBs leading to its reduction to Mn$^{2+}$ ions. Addition of different types of MnO$_2$ to PCB-contaminated soil caused a considerable difference in the removal efficiencies of PCBs, following the order of δ-MnO$_2 > \alpha$-MnO$_2 > \beta$-MnO$_2$. This result was primarily attributed to the different oxidation capacities and electromagnetic characteristics of different types of MnO$_2$. Addition of acid would enhance the oxidation capacity of MnO$_2$ and disturb the transfer of PCBs from soil to the surface of MnO$_2$. Low concentration of H$_2$SO$_4$ was favourable for the removal of DiCB, TriCB, TetraCB and PentaCB from the soil, but high concentrations of H$_2$SO$_4$ were disadvantageous to the removal of all the PCBs. Great reductions in treatment time and pronounced removal efficiencies of PCBs, especially for low chlorinated biphenyls, were accomplished in this study, indicating that MW irradiation with the assistance of MnO$_2$ is an efficient and promising treatment technology for the remediation of heavily PCB-contaminated soil.

Acknowledgements

This study was funded by the Major State Basic Research Development Program (No. 2007CB936604), the National Natural Science Foundation of Jiangsu Province, China (No. BK2012892), and the Innovation Project of Chinese Academy of Sciences (ISSASIP0720).

References
