抗生素的广泛使用,甚至滥用,大大加快了抗生素抗性基因(Antibiotic resistance genes, ARGs)的发展。ARGs污染已成为一个全球性问题,被联合国环境规划署列为六大新型环境污染物之首。ARGs在废水、污泥、畜牧场、土壤、河水、沉积物、大气、冰川甚至南极土壤中都有检测到。土壤是ARGs最重要的环境受纳体,不仅本身含有大量ARGs,还接收来自地表水、地下水、大气及动植物来源的ARGs,是控制ARGs迁移与传播的核心。
中科院南京土壤研究所王芳研究员应Current Opinion in Environmental Science & Health主编Damià Barceló教授的邀请,与中国科学院厦门城市环境研究所朱永官院士、密西根州立大学James M. Tiedje院士、加拿大农业部Edward Topp博士等教授共同撰写综述“Antibiotic resistance in the soil ecosystem: A One Health perspective”,系统阐述了如何在“One Health” (人、动物和环境一体化健康)背景下,研究ARGs在土壤生态系统的迁移与阻控,提出以下建议:(1) 区分自然环境中与临床相关的ARGs;(2) 建立ARGs与其他污染物共存风险评估的科学体系;(3) 理解ARGs与共存污染物赋存现状及其在土壤和水、植物和动物系统的迁移过程;(4) 研发阻控ARGs进入土壤和通过食物链向人类传播的绿色环保防控技术。
此外,王芳研究员团队围绕“土壤生态系统中抗生素抗性基因”为研究主题,以抗生素抗性基因这一新型污染物为研究对象,联合高通量荧光定量PCR与微生物测序技术,以田间实验和室内模拟相结合,取得了系列进展:研究了基本不受人类活动干扰的南极地区土壤环境中ARG污染状况,为ARGs的风险评估提供了基准值(Wang et al., Environ. Sci. Technol., 2016),探明了长期施肥与不同耕作模式对农田土壤中ARGs累积的长期效应(Wang et al., Environ. Sci. Technol., 2018); 明确了堆肥工艺可以降低有机肥中ARGs的相对丰度,但同时也降低了其在土壤中的消减速率,提高了ARGs在土壤中的持久性(Xu et al., Sci. Total Environ., 2019),对比了好氧、厌氧条件下菌群演替与抗生素抗性基因结构变化的互作效应,发现了厌氧土壤在ARGs阻控方面的积极作用(Xu et al., Sci. Total Environ., 2021);研发了功能材料-磁性生物质炭/季鏻盐(MBQ),实现了ARG传播载体-活性菌体与游离DNA的杀灭去除(Fu et al., Carbon, 2020; Fu et al., J. Hazard. Mater., 2021),明确了MBQ阻控ARGs传播的机理,为控制抗生素抗性基因在土壤生态系统中的传播扩散提供理论依据与技术支撑,对保护生态环境与人类健康具有重要意义。
土壤生态系统中抗生素抗性基因的迁移扩散
文章列表:
1. Fang Wang*, Yuhao Fu, Hongjie Sheng, Edward Topp, Xin Jiang, Yongguan Zhu, James M. Tiedje. 2021. Antibiotic resistance in the soil ecosystem: A One Health perspective. Current Opinion in Environmental Science & Health, 20: 100230.
文章链接:https://doi.org/10.1016/j.coesh.2021.100230
2. Yuhao Fu, Fang Wang*, Hongjie Sheng, Fang Hu, Ziquan Wang, Min Xu, Yongrong Bian, Xin Jiang, James M. Tiedje. 2021. Removal of extracellular antibiotic resistance genes using magnetic biochar/quaternary phosphonium salt in aquatic environments: A mechanistic study. Journal of Hazardous Materials, 411: 125048.
文章链接:https://doi.org/10.1016/j.jhazmat.2021.125048
3. Min Xu, Fang Wang*, Hongjie Sheng, Robert D. Stedtfeld, Zhongpei Li, Syed A. Hashsham, Xin Jiang, James M. Tiedje, 2021. Does anaerobic soil condition play a more positive role in dissipation of antibiotic resistance genes in soil? Science of the Total Environment, 757: 143737.
文章链接:https://doi.org/10.1016/j.scitotenv.2020.143737
4. Yuhao Fu, Fang Wang*, Hongjie Sheng, Min Xu, Ying Liang, Yongrong Bian, Syed A. Hashsham, Xin Jiang, James M. Tiedje, 2020. Enhanced antibacterial activity of magnetic biochar conjugated quaternary phosphonium salt, Carbon, 163: 360-369.
文章链接:https://doi.org/10.1016/j.carbon.2020.03.010
5. James M. Tiedje, Fang Wang*, Célia Manaia, Marko Virta, Hongjie Sheng, Liping Ma, Tong Zhang, Edward Topp, 2019. Antibiotic resistance genes in the human impacted environment: A one health perspective. Pedosphere, 29(3): 273-282.
文章链接:https://doi.org/10.1016/S1002-0160(18)60062-1
6. Min Xu, Robert D. Stedtfeld, Fang Wang*, Syed A. Hashsham, Yang Song, Yahui Chuang, Jianbo Fan, Hui Li, Xin Jiang, James M. Tiedje, 2019. Composting increased persistence of manure-borne antibiotic resistance genes in soils with different fertilization history. Science of the Total Environment, 689, 1172-1180.
文章链接:https://doi.org/10.1016/j.scitotenv.2019.06.376
7. Fang Wang*, Min Xu, Robert D. Stedtfeld, Hongjie Sheng, Jianbo Fan, Ming Liu, Benli Chai, Teotonio Soares de Carvalho, Hui Li, Zhongpei Li, Syed A. Hashsham, James M. Tiedje*, 2018. Long-term effect of different fertilization and cropping systems on the soil antibiotic resistome. Environmental Science & Technology, 52(22): 13037-13046.
文章链接:https://doi.org/10.1021/acs.est.8b04330
8. Fang Wang1, Robert D. Stedtfeld1, Ok-Sun Kim1, Benli Chai, Luxi Yang, Tiffany M. Stedtfeld, Soon Gyu Hong, Dockyu Kim, Hyoun Soo Lim, Syed A. Hashsham, James M. Tiedje, Woo Jun Sul*, 2016. Influence of soil characteristics and proximity to Antarctic research stations on abundance of antibiotic resistance genes in soils. Environmental Science & Technology, 50 (23): 12621-12629.
文章链接:https://doi.org/10.1021/acs.est.6b02863